Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2,6-Difluorobenzophenone)tris(trimethylphosphine)cobalt(0)

Jun Ding and Xiao-Yan Li*

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China Correspondence e-mail: xli63@sdu.edu.cn

Received 20 March 2009; accepted 2 April 2009

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.006 Å; R factor = 0.044; wR factor = 0.128; data-to-parameter ratio = 19.3.

In the title compound, $[Co(C_{13}H_8F_2O)(C_3H_9P)_3]$, the cobalt(0) atom is coordinated by three trimethylphosphine ligands and a π -coordinated carbonyl group of the 2,6-difluorobenzophenone ligand in a distorted tetrahedral geometry. The Co–O and Co–C distances are 1.896 (2) and 2.049 (4) Å, respectively.

Related literature

For general background to the activation of C–F bonds in organometallic chemistry and catalyst development, see: Kiplinger *et al.* (1994); Saunders (1996); Li *et al.* (2006).

Experimental

Crystal data [Co(C₁₃H₈F₂O)(C₃H₉P)₃]

 $M_r = 505.34$

	Monoclinic, $P2_1/c$ a = 14.214 (5) Å b = 9.820 (4) Å c = 19.241 (7) Å $\beta = 101.773$ (6)° V = 2629.3 (16) Å ³	Z = 4 Mo K α radiation $\mu = 0.86 \text{ mm}^{-1}$ T = 273 K $0.32 \times 0.27 \times 0.26 \text{ mm}$
	Data collection	
	Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.759, T_{max} = 0.800$	13574 measured reflections 5065 independent reflections 3278 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$
),	Refinement	
	$R[F^2 > 2\sigma(F^2)] = 0.044$ wR(F ²) = 0.128 S = 0.99 5065 reflections	262 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.31 \text{ e} \text{ Å}^{-3}$

Table 1

Selected bond lengths (Å).

Co1-P2	2.2304 (11)	Co1-P4	2.2632 (13)
Co1-P3	2.2081 (12)		

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We gratefully acknowledge financial support by the NSF China (No. 20872080/20772072) and the Science Foundation of Shandong Province, China (No. Y2007B06/Y2006B18).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2497).

References

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kiplinger, J. L., Richmond, T. G. & Osterberg, C. E. (1994). Chem. Rev. 94, 373-431.
- Li, X., Sun, H., Yu, F., Flörke, U. & Klein, H. F. (2006). Organometallics, 25, 4695-4697.
- Saunders, G. C. (1996). Angew. Chem. Int. Ed. 35, 2615-2617.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, m495 [doi:10.1107/S1600536809012367]

(2,6-Difluorobenzophenone)tris(trimethylphosphine)cobalt(0)

J. Ding and X.-Y. Li

Comment

The activation of carbon-fluorine bonds is of great importance in organometallic chemistry and catalyst development because this type of reaction contributes to the fundamental understanding of reactivity of stable bonds and selective replacement of F atoms (Kiplinger *et al.*, 1994; Saunders, 1996). Recently we have reported cyclometalation reactions involving C—F bond activation at a cobalt(I) center with azine as an anchoring group, which afforded the first complex containing a C—Co—F fragment (Li *et al.*, 2006).

We tried to synthesis compound I (Scheme 2) according to the route a in Fig. 2 throught the reaction of 2,6-difluorobenzophenone with tetra(trimethylphosphine)cobalt(0), but the reaction was actually occurred by route b (**Scheme 2**). Compound II was isolated as red crystals and its molecular structure is shown in Fig. 1. The cobalt atom is π -coordinated with carbonyl group. The Co—O and Co—C bond lengths are 1.896 (2) Å and 2.049 (4) Å (Table 1).

Experimental

The title compound was synthesized from the reaction of tetra(trimethyl phosphine)cobalt (1.2 g, 3.3 mmol) and 2,6-difluorobenzophenone (0.72 g, 3.3 mmol) in pentane (40 ml) for 24 h at 298 K. After filtration, the title complex was obtained from filtrate as red crystals at 246 K.

Refinement

The H atoms were geometrically placed and treated as riding atoms with C—H = 0.96 Å and $U_{iso}(H)=1.5U_{eq}(C)$ for methyl H atoms, C—H = 0.93 Å and $U_{iso}(H)=1.2U_{eq}(C)$ for arometic H atoms.

Figures

Fig. 1. The molecular structure of the title compound, displacement ellipsoids are drawn at the 25% probability level.

Fig. 2. The formation of the title compound.

(2, 6-Difluor obenzophenone) tris (trimethylphosphine) cobalt (0)

Crystal data	
[Co(C ₁₃ H ₈ F ₂ O)(C ₃ H ₉ P) ₃]	$F_{000} = 1060$
$M_r = 505.34$	$D_{\rm x} = 1.277 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2218 reflections
a = 14.214 (5) Å	$\theta = 2.3 - 22.0^{\circ}$
b = 9.820 (4) Å	$\mu = 0.86 \text{ mm}^{-1}$
c = 19.241 (7) Å	T = 273 K
$\beta = 101.773 \ (6)^{\circ}$	Prism, red
$V = 2629.3 (16) \text{ Å}^3$	$0.32 \times 0.27 \times 0.26 \text{ mm}$
Z = 4	

Data collection

Bruker APEX2 CCD diffractometer	5065 independent reflections
Radiation source: fine-focus sealed tube	3278 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.047$
T = 273 K	$\theta_{\text{max}} = 25.9^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -17 \rightarrow 13$
$T_{\min} = 0.759, \ T_{\max} = 0.800$	$k = -12 \rightarrow 10$
13574 measured reflections	$l = -21 \rightarrow 23$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.044$	$w = 1/[\sigma^2(F_o^2) + (0.0646P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.128$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 0.99	$\Delta \rho_{max} = 0.38 \text{ e } \text{\AA}^{-3}$
5065 reflections	$\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$
262 parameters	Extinction correction: SHELXL

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C22	0.0242 (3)	0.2517 (5)	0.0761 (3)	0.0976 (17)
H22A	0.0310	0.3485	0.0723	0.146*
H22B	-0.0280	0.2321	0.0993	0.146*
H22C	0.0112	0.2120	0.0295	0.146*
C21	0.1219 (4)	0.2248 (7)	0.2183 (3)	0.146 (3)
H21A	0.1384	0.3188	0.2275	0.219*
H21B	0.1636	0.1686	0.2521	0.219*
H21C	0.0565	0.2102	0.2225	0.219*
C20	0.1004 (3)	0.0027 (5)	0.1249 (4)	0.156 (3)
H20A	0.1527	-0.0510	0.1503	0.234*
H20B	0.0843	-0.0270	0.0764	0.234*
H20C	0.0456	-0.0079	0.1464	0.234*
Co1	0.27686 (3)	0.23243 (4)	0.10451 (2)	0.04168 (16)
P2	0.37675 (7)	0.09320 (11)	0.17586 (5)	0.0577 (3)
P3	0.13547 (7)	0.18019 (11)	0.12795 (6)	0.0611 (3)
P4	0.27110 (8)	0.12824 (11)	-0.00119 (5)	0.0638 (3)
C2	0.2322 (2)	0.5172 (3)	0.14070 (17)	0.0433 (8)
C1	0.2824 (2)	0.4393 (3)	0.09203 (17)	0.0451 (8)
C8	0.2790 (3)	0.4990 (4)	0.01902 (19)	0.0540 (9)
C3	0.1474 (3)	0.5910 (4)	0.1188 (2)	0.0617 (10)
Н3	0.1196	0.5968	0.0708	0.074*
C7	0.2722 (3)	0.5159 (4)	0.21376 (19)	0.0603 (10)
H7	0.3286	0.4676	0.2302	0.072*
C17	0.4027 (3)	0.1515 (5)	0.2682 (2)	0.0974 (16)
H17A	0.3443	0.1529	0.2860	0.146*
H17B	0.4295	0.2415	0.2705	0.146*
H17C	0.4478	0.0906	0.2964	0.146*
C6	0.2294 (3)	0.5848 (5)	0.2616 (2)	0.0764 (12)
H6	0.2588	0.5849	0.3094	0.092*
C13	0.1996 (4)	0.4964 (4)	-0.0364 (2)	0.0715 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C4	0.1040 (3)	0.6561 (4)	0.1688 (2)	0.0706 (12)
H4	0.0465	0.7026	0.1534	0.085*
C12	0.2003 (5)	0.5465 (5)	-0.1037 (2)	0.0985 (18)
H12	0.1452	0.5432	-0.1393	0.118*
C5	0.1444 (3)	0.6530 (5)	0.2400 (2)	0.0744 (12)
Н5	0.1147	0.6962	0.2728	0.089*
C14	0.1648 (4)	0.1393 (6)	-0.0739 (2)	0.1102 (19)
H14A	0.1436	0.2322	-0.0798	0.165*
H14B	0.1141	0.0840	-0.0628	0.165*
H14C	0.1811	0.1075	-0.1172	0.165*
C19	0.4970 (3)	0.1005 (6)	0.1562 (3)	0.115 (2)
H19A	0.4943	0.0720	0.1081	0.172*
H19B	0.5392	0.0412	0.1879	0.172*
H19C	0.5208	0.1922	0.1622	0.172*
C9	0.3600 (4)	0.5615 (4)	0.0023 (2)	0.0722 (12)
C15	0.3646 (4)	0.1877 (6)	-0.0472 (3)	0.1090 (18)
H15A	0.3619	0.2852	-0.0511	0.163*
H15B	0.3542	0.1483	-0.0938	0.163*
H15C	0.4265	0.1608	-0.0208	0.163*
C18	0.3626 (4)	-0.0900 (5)	0.1899 (3)	0.0966 (16)
H18A	0.3488	-0.1356	0.1448	0.145*
H18B	0.3106	-0.1044	0.2140	0.145*
H18C	0.4209	-0.1257	0.2181	0.145*
C16	0.2929 (5)	-0.0555 (5)	-0.0030 (3)	0.122 (2)
H16A	0.3485	-0.0783	0.0326	0.184*
H16B	0.3037	-0.0810	-0.0489	0.184*
H16C	0.2380	-0.1036	0.0063	0.184*
C10	0.3645 (5)	0.6093 (5)	-0.0633 (3)	0.1023 (19)
H10	0.4212	0.6469	-0.0718	0.123*
C11	0.2840 (6)	0.6012 (6)	-0.1169 (3)	0.115 (3)
H11	0.2862	0.6329	-0.1621	0.139*
F2	0.11615 (18)	0.4390 (3)	-0.02486 (12)	0.0844 (7)
F1	0.4389 (2)	0.5788 (3)	0.05420 (16)	0.0992 (9)
0	0.36561 (15)	0.3788 (2)	0.12166 (12)	0.0507 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C22	0.049 (3)	0.106 (4)	0.136 (4)	0.015 (2)	0.015 (3)	0.016 (3)
C21	0.092 (4)	0.265 (9)	0.095 (4)	-0.069 (5)	0.055 (3)	-0.020 (4)
C20	0.066 (3)	0.063 (4)	0.336 (9)	-0.020 (3)	0.033 (4)	0.019 (5)
Co1	0.0387 (3)	0.0395 (3)	0.0451 (3)	0.00219 (19)	0.00419 (19)	0.0017 (2)
P2	0.0495 (6)	0.0589 (7)	0.0628 (6)	0.0071 (5)	0.0071 (5)	0.0193 (5)
P3	0.0434 (5)	0.0559 (7)	0.0824 (7)	-0.0070 (4)	0.0089 (5)	0.0030 (5)
P4	0.0753 (7)	0.0568 (7)	0.0559 (6)	0.0111 (5)	0.0058 (5)	-0.0120 (5)
C2	0.0445 (19)	0.039 (2)	0.0469 (19)	-0.0049 (15)	0.0095 (16)	-0.0005 (15)
C1	0.0457 (19)	0.043 (2)	0.0458 (19)	0.0017 (15)	0.0072 (16)	0.0023 (16)
C8	0.074 (3)	0.041 (2)	0.051 (2)	0.0144 (18)	0.024 (2)	0.0037 (17)

C3	0.072 (3)	0.054 (3)	0.057 (2)	0.010 (2)	0.010 (2)	-0.0017 (19)
C7	0.060 (2)	0.066 (3)	0.051 (2)	-0.0006 (19)	0.0030 (19)	-0.0088 (19)
C17	0.106 (4)	0.106 (4)	0.066 (3)	-0.004 (3)	-0.015 (3)	0.022 (3)
C6	0.094 (3)	0.082 (3)	0.053 (2)	-0.008 (3)	0.014 (2)	-0.017 (2)
C13	0.101 (3)	0.064 (3)	0.051 (3)	0.037 (3)	0.019 (3)	0.009 (2)
C4	0.064 (3)	0.058 (3)	0.093 (3)	0.009 (2)	0.021 (2)	-0.010 (2)
C12	0.157 (5)	0.085 (4)	0.051 (3)	0.058 (4)	0.016 (3)	0.014 (3)
C5	0.083 (3)	0.077 (3)	0.074 (3)	-0.008 (3)	0.039 (3)	-0.022 (2)
C14	0.109 (4)	0.129 (5)	0.074 (3)	0.024 (3)	-0.025 (3)	-0.042 (3)
C19	0.050 (3)	0.169 (6)	0.127 (4)	0.028 (3)	0.020 (3)	0.073 (4)
C9	0.105 (4)	0.051 (3)	0.072 (3)	0.006 (2)	0.046 (3)	0.007 (2)
C15	0.140 (5)	0.108 (5)	0.093 (4)	0.018 (4)	0.059 (4)	-0.012 (3)
C18	0.116 (4)	0.065 (3)	0.106 (4)	0.022 (3)	0.017 (3)	0.032 (3)
C16	0.201 (6)	0.060 (4)	0.101 (4)	0.021 (4)	0.017 (4)	-0.020 (3)
C10	0.167 (6)	0.066 (3)	0.097 (4)	0.006 (3)	0.081 (4)	0.012 (3)
C11	0.222 (8)	0.072 (4)	0.077 (4)	0.053 (4)	0.088 (5)	0.025 (3)
F2	0.0767 (16)	0.101 (2)	0.0655 (15)	0.0232 (15)	-0.0084 (13)	0.0003 (13)
F1	0.099 (2)	0.092 (2)	0.116 (2)	-0.0297 (16)	0.0463 (19)	0.0059 (17)
0	0.0400 (13)	0.0444 (14)	0.0660 (15)	-0.0008 (10)	0.0070 (11)	0.0052 (11)

Geometric parameters (Å, °)

C22—P3	1.829 (4)	С7—Н7	0.9300
C22—H22A	0.9600	С17—Н17А	0.9600
С22—Н22В	0.9600	С17—Н17В	0.9600
C22—H22C	0.9600	C17—H17C	0.9600
C21—P3	1.841 (5)	C6—C5	1.370 (6)
C21—H21A	0.9600	С6—Н6	0.9300
C21—H21B	0.9600	C13—F2	1.372 (5)
C21—H21C	0.9600	C13—C12	1.386 (6)
C20—P3	1.810 (5)	C4—C5	1.374 (6)
C20—H20A	0.9600	С4—Н4	0.9300
С20—Н20В	0.9600	C12-C11	1.376 (7)
C20—H20C	0.9600	C12—H12	0.9300
Co1—O	1.896 (2)	С5—Н5	0.9300
Co1—C1	2.049 (4)	C14—H14A	0.9600
Co1—P2	2.2304 (11)	C14—H14B	0.9600
Co1—P3	2.2081 (12)	C14—H14C	0.9600
Co1—P4	2.2632 (13)	C19—H19A	0.9600
P2—C19	1.826 (4)	C19—H19B	0.9600
P2—C17	1.830 (4)	С19—Н19С	0.9600
P2—C18	1.836 (5)	C9—F1	1.351 (5)
P4—C16	1.833 (5)	C9—C10	1.361 (6)
P4—C15	1.835 (5)	C15—H15A	0.9600
P4—C14	1.842 (4)	C15—H15B	0.9600
C2—C3	1.395 (5)	C15—H15C	0.9600
C2—C7	1.405 (5)	C18—H18A	0.9600
C2—C1	1.498 (4)	C18—H18B	0.9600
C1—0	1.343 (4)	C18—H18C	0.9600

C1—C8	1.514 (5)	C16—H16A	0.9600
C8—C13	1.386 (5)	C16—H16B	0.9600
C8—C9	1.399 (6)	C16—H16C	0.9600
C3—C4	1.398 (5)	C10—C11	1.378 (8)
С3—Н3	0.9300	C10—H10	0.9300
С7—С6	1.379 (5)	C11—H11	0.9300
Р3—С22—Н22А	109.5	С2—С7—Н7	119.3
P3—C22—H22B	109.5	P2—C17—H17A	109.5
H22A—C22—H22B	109.5	P2—C17—H17B	109.5
P3—C22—H22C	109.5	H17A—C17—H17B	109.5
H22A—C22—H22C	109.5	P2—C17—H17C	109.5
H22B—C22—H22C	109.5	H17A—C17—H17C	109.5
P3—C21—H21A	109.5	H17B—C17—H17C	109.5
P3—C21—H21B	109.5	C5—C6—C7	121.3 (4)
H21A—C21—H21B	109.5	С5—С6—Н6	119.4
P3—C21—H21C	109.5	С7—С6—Н6	119.4
H21A—C21—H21C	109.5	F2—C13—C12	117.9 (5)
H21B—C21—H21C	109.5	F2—C13—C8	118.5 (3)
P3—C20—H20A	109.5	C12—C13—C8	123.5 (5)
P3—C20—H20B	109.5	C5—C4—C3	121.5 (4)
H20A—C20—H20B	109.5	С5—С4—Н4	119.3
P3—C20—H20C	109.5	С3—С4—Н4	119.3
H20A—C20—H20C	109.5	C11—C12—C13	118.8 (5)
H20B—C20—H20C	109.5	C11—C12—H12	120.6
O-Co1-C1	39.56 (11)	C13—C12—H12	120.6
O-Co1-P3	137.86 (8)	C6—C5—C4	118.5 (4)
C1—Co1—P3	108.22 (10)	С6—С5—Н5	120.8
O—Co1—P2	92.30 (8)	С4—С5—Н5	120.8
C1—Co1—P2	130.17 (9)	P4—C14—H14A	109.5
P3—Co1—P2	102.91 (5)	P4—C14—H14B	109.5
O—Co1—P4	113.57 (8)	H14A—C14—H14B	109.5
C1—Co1—P4	109.76 (10)	P4—C14—H14C	109.5
P3—Co1—P4	102.18 (5)	H14A—C14—H14C	109.5
P2—Co1—P4	100.24 (5)	H14B—C14—H14C	109.5
C19—P2—C17	100.2 (2)	P2—C19—H19A	109.5
C19—P2—C18	101.8 (2)	P2—C19—H19B	109.5
C17—P2—C18	99.8 (2)	H19A—C19—H19B	109.5
C19—P2—Co1	110.71 (15)	P2—C19—H19C	109.5
C17—P2—Co1	112.49 (17)	H19A—C19—H19C	109.5
C18—P2—Co1	128.02 (16)	H19B—C19—H19C	109.5
C20—P3—C22	98.6 (3)	F1—C9—C10	116.9 (5)
C20—P3—C21	100.3 (3)	F1—C9—C8	118.9 (4)
C22—P3—C21	100.3 (3)	C10—C9—C8	124.2 (5)
C20—P3—Co1	118.24 (19)	P4—C15—H15A	109.5
C22—P3—Co1	121.41 (17)	P4—C15—H15B	109.5
C21—P3—Co1	114.39 (17)	H15A—C15—H15B	109.5
C16—P4—C15	99.3 (3)	P4—C15—H15C	109.5
C16—P4—C14	99.2 (3)	H15A—C15—H15C	109.5
C15—P4—C14	100.2 (3)	H15B—C15—H15C	109.5
	· · ·		

C16—P4—Co1	119.15 (17)	P2-C18-H18A	109.5
C15—P4—Co1	113.11 (18)	P2-C18-H18B	109.5
C14—P4—Co1	122.00 (16)	H18A—C18—H18B	109.5
C3—C2—C7	117.0 (3)	P2—C18—H18C	109.5
C3—C2—C1	124.7 (3)	H18A—C18—H18C	109.5
C7—C2—C1	118.3 (3)	H18B—C18—H18C	109.5
O—C1—C2	116.8 (3)	P4C16H16A	109.5
O-C1-C8	115.1 (3)	P4—C16—H16B	109.5
C2—C1—C8	116.9 (3)	H16A—C16—H16B	109.5
O-C1-Co1	64.08 (17)	P4—C16—H16C	109.5
C2C1Co1	113.5 (2)	H16A—C16—H16C	109.5
C8—C1—Co1	119.9 (2)	H16B—C16—H16C	109.5
C13—C8—C9	114.2 (4)	C9—C10—C11	119.0 (6)
C13—C8—C1	125.0 (4)	C9—C10—H10	120.5
C9—C8—C1	120.7 (4)	С11—С10—Н10	120.5
C2—C3—C4	120.3 (4)	C12—C11—C10	120.2 (5)
С2—С3—Н3	119.8	C12—C11—H11	119.9
С4—С3—Н3	119.8	C10-C11-H11	119.9
C6—C7—C2	121.3 (4)	C1—O—Co1	76.37 (18)
С6—С7—Н7	119.3		

Fig. 1

Fig. 2